Representation of potential energy surfaces by discrete polynomials : proton transfer in malonaldehyde¤

نویسنده

  • V. Aquilanti
چکیده

A new method for the expansion of potential energy surfaces has been developed exploiting the peculiar properties of Hahn polynomials, a class of orthogonal polynomials of a discrete variable which generalize 3j vector coupling coefficients of angular momentum algebra. The method has been tested for the He nonÈHeiles potential, a typical model for coupled oscillators, and applied to the representation of the potential energy surface of malonaldehyde, a prototype system for intramolecular proton transfer in polyatomic molecules. The representation is obtained by Ðtting the polynomial expansion to a set of points calculated by the density functional theory method on a hyperspherical e†ective three-center coordinate system, in view of perspective quantum dynamical calculations of the proton transfer process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalized reactive force field for nonlinear hydrogen bonds: hydrogen dynamics and transfer in malonaldehyde.

Using molecular dynamics (MD) simulations, the spectroscopy and dynamics of malonaldehyde is investigated. To this end, the recently proposed molecular mechanics with proton transfer (MMPT) potential is generalized to nonlinear hydrogen bonds. The calculated properties for malonaldehyde in both gas and condensed phases, including equilibrium geometries, infrared spectra, tunneling splittings, a...

متن کامل

Kinetic isotope effects and how to describe them

We review several methods for computing kinetic isotope effects in chemical reactions including semiclassical and quantum instanton theory. These methods describe both the quantization of vibrational modes as well as tunneling and are applied to the ⋅H + H2 and ⋅H + CH4 reactions. The absolute rate constants computed with the semiclassical instanton method both using on-the-fly electronic struc...

متن کامل

Proton Transfer Studied Using a Combined Ab Initio Reactive Potential Energy Surface with Quantum Path Integral Methodology.

The rates of intramolecular proton transfer are calculated on a full-dimensional reactive electronic potential energy surface that incorporates high level ab initio calculations along the reaction path and by using classical Transition State theory, Path-Integral Quantum Transition State Theory, and the Quantum Instanton approach. The specific example problem studied is malonaldehyde. Estimates...

متن کامل

Theoretical Study on the Chemical Reactivity in the Armchair Single-walled Carbon Nanotube: Proton and Methyl Group Transfer

Proton transfer (PT) and methyl group transfer (MGT) occurring in small biomimetic systems, Formamide-Formamidic acid (FA-FI), and N-formyl-N-methylformamide-(E)-methyl N-formylformimidate (NMFA-NMFI) are investigated in the gas phase and in single-walled carbon nanotubes by using the density functional theory and the ONIOM approach. It is shown that PT reaction is disfavoured in single-walled ...

متن کامل

Computational study of the intramolecular proton transfer between 6-hydroxypicolinic acid tautomeric forms and intermolecular hydrogen bonding in their dimers

This paper is a density functional theory (DFT) calculation of intramolecular proton transfer (IPT) in 6-hydroxypicolinic acid (6HPA, 6-hydroxypyridine-2-carboxylic acid) tautomeric forms. The transition state for the enol-to-keto transition is reported in the gas phase and in four different solvents. The planar and non-planar dimer forms of 6HPA keto and enol, respectively, were also studied i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000